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Thermal: expansion of grain-boundary cracked 
aluminium titanate ceramics 

Y. OHYA, Y. TAKAHASHI  
Department of Applied Chemistry, Faculty of Engineering, Gifu University, 
Yanagido 1-1, Gifu 501-11, Japan 

Z. N A K A G A W A  
Research Laboratory of Engineering Materials, Tokyo Institute of Technology, Nagatsuta 
4259, Yokohama 227, Japan 

The relation between thermal expansion coefficient and grain-boundary crack volume of 
aluminium titanate ceramics has been calculated based on the thermal expansion data of 
a single crystal. The calculation began with the drawing of a frequency distribution curve of 
the thermal expansion coefficient for a single grain. Using the single-grain distribution 
curve, a distribution curve of an average coefficient for two adjacent grains was derived. The 
thermal expansion with a partially grain-boundary cracked body was calculated in relation to 
the amount of cracked boundary from the average distribution curves. The expected relation 
between crack volume and thermal expansion was close to that of the experimental data. 

1. Introduction 
Generally, the thermal expansion coefficient is a unique 
value for a monolithic ceramic material. Therefore, the 
coefficient is usually independent of microstructure of 
the ceramics. One of the exceptions is that of anise- 
tropic materials, such as aluminium titanate and other 
Pseudobrookite-type ceramics. In these ceramics, the 
enormous anisotropy in thermal expansion introduces 
grain-boundary cracking during tlie cooling period 
from their fabricating temperatures [1]. This grain- 
boundary cracking, as is well known, causes low ther- 
mal expansion of the materials and induces a depend- 
ence of the thermal expansion on microstructure 
[-2-4]. As the number of grain-boundary cracks could 
be influenced by the grain size [5], the thermal expan- 
sion coefficient of the ceramics would be a function of 
the grain size [4]. However, in principle, the thermal 
expansion should be directly correlated to the grain- 
boundary cracks and not with the grain size. 

Aluminium titanate has a very large anisotropic 
nature of thermal expansion [1] and has been well 
studied owing to its very low thermal expansion and 
high melting temperature [6-8]. In this work, we 
derived a correlation between the volume of grain- 
boundary cracks and the thermal expansion coeffi- 
cient for aluminium titanate ceramics, and examined 
the validity of the correlation by comparing it with the 
experimental results. 

2. Calculation of the thermal expansion 
of a cracked body 

The method used in the work begins with a calcu- 
lation of the frequency distribution of thermal expan- 
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sion coefficient for a single crystal. Using this one- 
grain distribution curve, a frequency distribution of 
average thermal expansion coefficient for two adjacent 
grains with random orientations is calculated. The 
method up to this step is the same as the work of 
Buessem [9], but more precise in calculation. From 
the resulting distribution of the two-grain average 
coefficient, we evaluate the crack volume at room 
temperature and the thermal expansion coefficient on 
heating. 

2.1. Distribution of the thermal expansion 
coefficients of one grain 

The thermal expansion coefficient of a non-cubic crys- 
tal depends on the crystallographic direction. Alumi- 
nium titanate is a crystal of orthorhombic system and 
its thermal expansion coefficient, a, for a direction 
(ll 1213) is represented by 

= ~~ + =bI~ + acl~ (1) 

where %, %, and ~c are the principal thermal expan- 
sion coefficients along the crystallographic axes a, b, 
and c, respectively. Before calculation, the coordina- 
tion system is changed from Cartesian to a polar one 
(shown in Fig. 1) as follows 

ll = cos d)sin 0 (2a) 

12 = sin (~sin 0 (2b) 

13 = cos0 (2c) 

The value of the thermal expansion coefficient, a, :was 
calculated for every set of d~ and 0, which increase from 
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Figure 3 Frequency distribution of the average thermal expansion 
coefficient for two adjacent grains. 

Figure 1 The coordinate system for the calculation. 
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Figure 2 Frequency distribution of the thermal expansion coeffi- 
cient for a single crystal. 

0~ ~ by dqb and dO, respectively. Because the direc- 
tion of (111213) has an area of d~d0s in0  in the polar 
coordination system, the frequency corresponding to 

increases by dqb dO sin 0 when the calculated value is 
between a and ~ + d~. 

In the calculation, the values of ~a, % and ac 
were cited from Taylor [10] (an average coefficient 
from room temperature to 1400 ~ i.e. 
cx,= 1 0 . 9 x 1 0 - 6 K  -~, % = 2 1 . 5 x 1 0 - 6 K  -1, and 
c~= - 2 . 6 3 x 1 0 - 6 K  -1, and d 0 = d 0 = 0 . 0 5  ~ 
d~ = 0.1 x 1 0 - 6 K  - t .  The result is shown in Fig. 2. 
This distribution curve is characterized by its steep 
maximum. To confirm the steep maximum of the 
curve and to avoid the accumulation of numerical 
error in calculation, some calculations were conducted 
under several other conditions, i.e. taking the angle 
qt (=  90 ~ - 0) increasing from 0~ ~ by d~t = 0.05 ~ 
instead of 0 and exchanging the data of %, %, and 
0~c with each other. All results showed the same steep 
maximum and all data were the same within several 
percentages. 

This calculated frequency distribution curve is for 
one grain. In a ceramic body, many grains are in 
contact with random orientations. Therefore, from 
the frequency distribution curve shown in Fig. 2 

and assuming the same grain size, the average thermal 
expansion of two-faced grains having expansion coef- 
ficients a and a' is defined as 13 = (~ + ~')/2. The value 
of 13 is an average thermal expansion coefficient be- 
tween the centres of two-faced grains. The calculation 
was conducted using all sets of ~ and ~' in Fig. 2, and 
the value 13 increases by f(~)f(a'), when (~ + ~')/2 is 
between 13 and 13 + dl3, where f ( a )  is a frequency 
distribution curve of a, Fig. 2, and d13 is 
0.1 x 10 .6  K -  1. Fig. 3 shows the calculated frequency 
distribution curve of ft. 

2.2. Estimation of crack volume 
During cooling from the fabricating temperature, the 
specimen contracts with an average thermal expan- 
sion coefficient, leaving stresses at grain boundaries. 
The average thermal expansion coefficient of the ce- 
ramic body should be about the middle of the fre- 
quency distribution curve of 13. The grain boundaries, 
having larger 13 than the average thermal coefficient of 
the ceramic body, are under tensile stresses, because 
two-faced grains having these large 13 tend to contract 
at a larger rate than the body does on cooling. When 
the grain-boundary stress reaches some critical value, 
which is determined by an energy criterion, [10-14],  
the grain boundary begins to crack to release elastic 
energy at the boundary. The cracking shoul_d start 
from the boundaries having the maximum 13 (13max in 
Fig. 3), because the boundaries are under the max- 
imum tensile stress and therefore have maximum 
elastic energy, which can be released by grain-bound- 
ary cracking. On further cooling, the cracking bound- 
aries shift to those having smaller J3, right to left in 
Fig. 3. At room temperature, all grain boundaries hav- 
ing larger 13 than 13 .. . .  k are cracked, leaving uncracked 
boundaries, which have 13 less than [3 .... k (as in Fig. 3). 
The crack opening of a cracked grain boundary having 
[3 is ([3 - 13 .... k)IAT at room temperature, where I is the 
grain size and AT the temperature difference between 
sintering and room temperature. This crack has volume 
of (13 - 13 .... k)lATlZk ', where k' is a factor relating to 
the shape of the grain boundary. The crack volume 
should be thought of as the volume fraction to total 
volume. So we can define the crack volume in unit 
volume, Voraok, in the specimen at room temperature 
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Figure 4 Crack volume per unit volume and thermal expansion 
coefficients (TEC) of a grain-boundary cracked body plotted against 
the minimum thermal expansion coefficient of cracked grain bound- 
aries. ( ) Simple average of the thermal expansion coefficient; 

Q minimizing the elastic energy. 

as follows 

Vor.~k = k 0(13)(13 - -  13 . . . .  k ) A r d 1 3  (3) 
~e~a~k 

where g(13) is the frequency distribution curve of 
13 shown in Fig. 3 and k is a constant. 

Instead of determining k and the vertical scale of the 
distribution curve in Fig. 3, it is convenient to calcu- 
late the maximum crack volume, ( V c r a c k ) m a x l  . . . .  at 
which 13 .... k reaches the minimum value of 13, or all 
grain boundaries are cracked. This value gives a 
new factor to the numerical integration of Equation 3. 
In this work, we calculated the maximum crack 
volume as three times the difference of linear 
thermal expansion between the non-cracked body 
[ (0~a  -~- ~ b  -[- r and the all-cracked body hav- 
ing the largest expansion (or the smallest coefficient of 
c-axis), as follows 

( g c r a c k ) m a x i m u m  : 3[(~a + ~ b  -}- uc)/3 - a t ]AT.  

(4) 

In the equations, the value of AT is 1375 ~ C, because 
the experimental data of the crack volume, which have 
been described in our previous papers [15, 16] in de- 
tail and will be discussed later in the paper, were 
obtained for specimens fired at 1300-1500 ~ mainly 
at 1400 ~ Fig. 4 is a result of the above calculation 
and Vo,aok is shown as a function of 13 .... k in the graph. 

integrate numerically the area of 9(13) from 13rain to 
13 .... k. Then we integrate again the area of 9(13) from 
13mi, to increase the 13 value until the integrated value 
reaches a half of the area from 13rain to 13 .... k, and the 
13 value gives 13body 

.... f/ ..... f =kg(13) 613/2 g(13) d13 = g(13) d13 (5) 
,J ~min body min 

Another rather precise solution could be obtained 
by minimizing the elastic energy on heating. This 
solution could be calculated by making the following 
assumptions: the crystal is isotropic in its elastic na- 
ture and the increase in strain energy due to the 
normal stresses of adjacent grains on heating is only 
taken into account. Assuming a grain boundary to 
have a thermal expansion coefficient of [3 and a ther- 
mal expansion coefficient of a ceramic body of 13body, 

the elastic energy in unit volume is represented by 
E[(13body- 13)AT]2/2, where E is an elastic constant 
and AT is the temperature difference of interest. The 
average thermal expansion coefficient, 13body, is deter- 
mined by 

d i ~ ..... d~-odyd!3~. {E[(13body- 13)AT]Z/2}g(13)d13 = 0 (6a) 

and hence 

E(AT) 2 d { 2  (~ ..... 
An- /13body / g(13) d13 

2 UlObody \ d ~3~i. 

- -  213body 13g(13)d13 + 2g(13)d = 0 (6b) 
mla ml. 

We get 

13uo.,=f2: ~176 (7)  

In Equation 7, 13body can also be calculated numer- 
ically against a given value of 13 .... k. In this way, we 
can obtain the value of 13body as a function of [3 .... k- 

The relations of 13body and [3 . . . .  k are also shown in 
Fig. 4, where we obtain two quantities, 13boay and 
Vorack, as functions of 13 .... k- A new relation is found 
between the two quantities, 13boay and Vcr,ck, by elimin- 
ating a common parameter, [3 .... k, from the two rela- 
tions. The change in 13boay with Vcra~k is shown in the 
next section. 

2.3. Estimation of average thermal 
expansion coefficient 

When the grain-boundary cracked specimen is heated, 
it expands with an average thermal expansion coeffic- 
ient, 13body" The next step in our work was to determine 
13body from Fig. 3 for a given 13 . . . .  k. The simplest solu- 
tion for 13body could be obtained by calculating the 
average expansion coefficient of an uncracked area in 
Fig. 3. The values of 13body c a n  be defined as the [3 value 
that divides the uncracked region in Fig. 3 into two 
parts of equal area. The value of 13boay can be obtained 
as a function of 13 .... k by numerical integration as 
follows. First we select .the value of [3 .... k and then 

3. Experimental data 
The experimental procedure on aluminium titanate 
ceramics and some of the resultant data on thermal 
expansion of fired bodies were shown previously 
[15, 16]. Fig. 5 shows examples of the thermal expan- 
sion of fired ceramics with some additives. The ther- 
mal expansion and average thermal expansion coeffic- 
ients of these ceramics from room temperature to 
500~ and from room temperature to 1000~ were 
determined. Fig. 6 shows the relation between per- 
centage crack volume at room temperature and per- 
centage linear thermal expansion of the ceramics at 
500 and 1000 ~ C. The grain-boundary crack volume 
was measured as shown in Fig. 7, which also gives 
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Figure 5 Thermal expansion curves of doped aluminium titanate 
ceramics; Mg, MgO 5 wt %; Y, Y203 5 wt %; Fe, Fe20 3 5 wt %, Zr, 
ZrO2 5 wt %; S. blank specimen. Experimental procedures are given 
in [16]. 

1 . 0 [ ,  �9 , �9 , . , �9 L . 

p, 
�9 s 0.6' 

0 
0.4 �9 o o ' x , ~  x o o~ 

�9 " - " - - - < _ " L  
0 0 .  �9 ~ - . l =  N 

I ~ I , I , I , I ~ " ~  

0 1 2 3 4 
Crack volume (%) 

Figure 6 Thermal expansion at ( I )  500 and (�9 1000~ plotted 
against grain-boundary crack volume. 
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Figure 7 Measurement of crack volume during the cooling period 
of fabrication of the ceramics. Samples A-D differ in grain size. 
Three times the linear exp~insion represents the crack volume at 
room temperature. 
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Figure 8 Thermal expansion coefficients: ( ) simple average, 
( - - - )  minimizing the elastic energy, experimental data fiom 
((2)) room temperature to 1000~ and ( I )  room temperature to 
500 ~ C. 

some experimental data. Details of the measurement 
of crack volume were given elsewhere [5]. Both the 
experimental data and the calculated values of ther- 
mal expansion coefficient are shown in Fig. 8 as 
a function of the crack volume. It is clear that the 
experimental data closely fit with the calculated data. 
The graph also indicates that the two calculations 
based on the simple average of thermal expansion and 
on minimizing the elastic energy show little difference 
between the results, and the former assumption is 
sufficient to calculate the average thermal expansion 
coefficients of a sintered body. 

4. C o n c l u s i o n  
The distribution curve of the thermal expansion coef- 
ficient for aluminium titanate was calculated and 
characterized by the steep maximum. The distribution 
of two-faced grains average of the coefficients was also 
calculated. Using this two-grain average, a relation- 
ship between grain-boundary crack volume at room 
temperature and the thermal expansion coefficient of 
grain-boundary cracked aluminium titanate ceramics, 
was evaluated making certain assumptions. The rela- 
tion between crack volume and thermal expansion 
coefficients of the experimental data fit very closely to 
that of the calculated values. 

R e f e r e n c e s  
1. G. BAYER, J. Less-Common Metals 24 (1971) 129. 
2. S.M. LANG, C. L. FILLMORE and L. H. MAXWELL, J. 

Res. Nat. Bur. Stand. 48 (1952) 298. 
3. W.R. BUESSEM, N. R. THIELKE and R. V. SARAKAUS- 

KAS, Ceram. Age 6 0  (5) (1952) 38. 
4. F.J.  PARKER and R. W. RICE, J. Am. Ceram. Soc. 72 (1989) 

2364. 
5. Y. OHYA and Z. NAKAGAWA, J. Mater. Sei., in press. 
6. H.A. THOMAS and R. STEVENS, Br. Ceram. Trans. J. 88 

(1989) 145. 
7. Idem. ibid. 88 (1989) 184. 
8. Idem. ibid. 88 (1989) 229-233. 
9. W. R. BUESSEM, in "Mechanical Properties of Engineering 

Ceramics", edited by Kreigel and Palmour (Interscience, New 
York, 1961) pp. 127-47. 



10. D. TAYLOR, Br. Ceram. Trans. J. 87 (2) (1987) 39. 
11. J. A. K U S Z Y K  and R. C. BRADT, J. Am. Ceram. Soc. 56 

(1973) 420. 
12. J. J. CLEVELAND and R. C. BRADT, ibid. 61 (1978) 

478. 
13. R .W.  DAVIDGE,  Acta Metall. 29 (1981) 1695. 
14. Y. OHYA, Z. NAKAGAW A and K. HAMANO,  J. Am. Ce- 

ram. Soc. 70 (1987) C184. 

15. Y. OHYA, K. HAMANO and Z. NAKAGAWA,  Yogyo- 
Kyokai-Shi (J. Ceram. Soc. Jpn.) 91 (1983) 289. 

16. Idem. ibid. 94 (1986) 665. 

Received 11 July 1994 
and accepted 8 September 1995 

1365 


